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ABSTRACT

Remote sensing of the oceans via satellites is providing useful data that can be used for realtime
input into and verification of the numerical ocean models. To make an optimum use of these data,
efficient methods are being developed to handle vast amounts of data and provide their quick analyses
and summaries in the form of mesoscale features.

Identification, isolation and tracking of mesoscale features plays an important role in numerical
ocean modeling. Of late, there has been considerable interest in designing algorithms to automatically
detect such oceanographic features as temperature fronts and eddies. This report provides a litera-
ture review of recent approaches and efforts on objective feature identification (OFI) as it pertains to
oceanographic applications. Most of the OFI work in oceanography has been done on characterizing
the Gulf Stream (GS); and since the GS incorporates all the mesoscale feature complexities that one
may desire to resolve, the literature reviewed here pertains to this feature entirely. It is felt that the
work cited is quite representative and is applicable to other geographical features of interest.

Feature identification from satellite data can be viewed as a four-step process: (1) edge detection
- analyzes pixels in satellite images for frontal boundaries; (2) edge labeling - assigns feature labels
to frontal pixels; (3) spatial interpolation - fills spatial gaps in labeled features due to clouds or data
sparsity; and (4) expert system - provides additional interpolation over space and time based on knowl-
edge of the region dynamics. Most research efforts are focused on algorithm development for individual
steps. Considerable effort is required to put together a complete system that can go from raw, satel-
lite imagery to a finished product in terms of digitized information on frontal location and dynamics.
The Navy's Semi-Automated Mesoscale Analysis System (SAMAS) is perhaps the only system that has
combined these steps in a modular approach. The only other image analysis system is that of the Uni-
versity of Rhode Island (URI), which emphasizes the removal of clouds from AVHRR images to enhance
edge detection.

This review describes how different algorithms and approaches are being used in objective feature
identification. After reviewing algorithms for the four steps individually, brief descriptions of SAMAS
and the URI image analysis system are provided. Finally, methods of feature extraction and eddy
tracking from model output are described. The Center for Air Sea Technology (CAST) has implemented
these algorithms for oceanographic visualization. Accession For
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1. INTRODUCTION region in the volume that has similar characteristics
(Moorhead and Zhu, 1993). Formally, if the volume

Because of the ever-increasing amount of satellite- V is constituted by functional values of f that are
derived data available and because computers have bounded, then a feature may be defined as follows:
become faster and less expensive, there is a ris-
ing interest in designing algorithms to automati- . a temporally-dynamic region 1 e ! with all
cally detect oceanographic features such as temper- sample values belonging to a specified range C,
ature fronts and eddies. This paper provides a lit- or

erature review of recent approaches and efforts on * a region 1Z E V with sample values significantly
objective feature identification (OFI) pertaining to different from the neighboring regions.
oceanographic applications.

In the first case, features are defined in terms
Characterization of ocean front and eddy fea- of the original sample values; the computer extracts

tures plays an important role in numerical ocean the subset 1Z easily in terms of the defining char-
modeling. For instance, the objectively-determined acteristic specified by C. A well-known example of
location and size of an eddy can be directly assimi- such a feature is the subsurface GSNW defined as
lated into a numerical ocean model using a 'feature' the 15 deg isotherm at 200 m depth. This subset
model (Robinson and Walstad, 1987). The location is easily extracted from a three-dimensional grid-
of the North Wall (NW) of the Gulf Stream () is ded model output. In the second case, features are
used to separate water masses for input to the Op- not defined by the original sample values but by the
timum Thermal Interpolation System (OTIS) analy-
ses of the GS region (Cummings, 1991). Such OTIS region edges. This property characterizes features
analyses, using the GS North Wall (GSNW) location, as only those regions that exhibit significant differ-

were used for model initialization in DAMEE-GSR ences from the surrounding values; or equivalently,

(Data Assimilation and Model Evaluation Experi- these regions can be identified because of the sharp
ments - Gulf Stream Region); see Perkins (1993) for edges (boundaries).
details. According to Lybanon and Holyer (1991), gener-

Objectively-determined ocean features also play ation of oceanographic products from the interpre-
an important role in the objective evaluation of nu- tation of satellite data is a three-level image reso-
merical ocean models. Often, the performance of a lution paradigm: (1) edge detection, (2) edge label-

numerical model is defined in terms of its capabil- ing, and (3) feature construction. The edge detec-
ity to reproduce certain observed, quantifiable fea- tion level is the lowest, which works at the pixel
tures. Model output is analyzed to quantify the char- level to derive feature edges or boundaries. These
acteristic feature and compared with the objectively- edges are disjoint. To join or fill in these disjoint

derived feature from observations. In DAMEE-GSR, edges, the next step is to label them correspond-

the GSNW location has been used for an assessment ing to the features they represent. The final step

of ocean models prediction performance (Perkins, is to fill in the gaps using spatial interpolation. In

1993; Fox et al., 1991). addition to these three levels, Lybanon and Holyer
(1991) include a fourth level, viz., the expert sys-

For feature extraction from satellite observa- tem, which provides temporal interpolation during
tions or three-dimensional model output, computer time periods of sparse observations. The expert sys-
based algorithms can be used to exploit the physi- tem's rule base represents oceanographic knowledge
cal characteristics of the observations. The develop- about the evolution of mesoscale ocean features in
ment of such algorithms requires that a feature be terms of their kinematics. These four steps form
specified formally in terms of its defining character- the Four-Tiered Approach for the development of the
istics. Given a set of sample values of a scalar field Navy's Semi-Automated Mesoscale Analysis System
f(c, y, z) over a volume, a feature is defined to be a (SAMAS) (Peckinpaugh and Holyer, 1991).
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Considerable work has been done in each of Most of the techniques appearing in the liter-
the above categories separately; however, there has ature on objective identification of ocean features
been a notable lack of effort in putting an overall are based on satellite observations of sea-surface
system together that is capable of systematically temperature (SST) and sea-surface height (SSH) in-

converting raw images of satellite data into a fin- formation from GEOSAT and pertain to the Gulf

ished picture which delineates all major features. Stream region. Section 2 gives a description of

In oceanographic applications, there are two dif- the two types of satellite data, followed in Section

ferent systems that are in the forefront. One is 3 by a few conventional definitions of the terms

the Navy's SAMAS (Holyer and Peckinpaugh, 1990; used. Section 4 then describes the edge detection ap-

Krihnakumar et al., 1990a) in which most of the proaches including the Cluster Shade Algorithm due
to Holyer and Peckinpaugh (1989) and the URI al-

components are well identified and tested. The ex-
pert system component still needs to be developed. gorithm which is based on objective statistical tests
pheothert system componentsillneedsgtb developed , afor sequential decision making (Cornillon and Watts,The other system is being developed at University 1987; Cayula and Cornillon, 1992). Section 5 coy-

of Rhode Island (URI). URI has performed consid- ers t atulaba n g aproac and Sicain -

erable analyses of the satellite AVHRR images, but es the Reat ion labeling Algorih adopted
it as eenlimtedto rovdin laele edes f te cudes the Relaxation Labeling Algorithm adopted

it has been limited to providing labeled edges of the by the Navy (Krishnakumar et al., 1990a). The spa-
featurin, tial interpolation algorithms are described in Sec-

In the edge labeling component, SAMAS uses tion 6. The section reviews the complex empirical

the Relaxation Labeling Algorithm, which is an orthogonal functions (CEOF) approach of Molinelli

iterative procedure based on Bayes' Theorem and Flanigan (1987), the Pathfinder algorithm (Hor-

(Krihnakumar et al., 1990a). Correspondingly, ton, 1989) and, more importantly, includes the de-

URI has the Contour-Following Algorithm, which scription of work on space-time interpolation (Mari-

restricts the rate of change with which the contour- ano, 1990; Chin and Mariano 1993).

curvature can vary spatially. For spatial interpo- With this development at hand, we give in Sec-
lation, SAMAS employs an algorithm developed by tion 7, a brief description of the Navy and the URI
Molinelli and Flanigan (1987) which is based on systems in their modular form. As a complete sys-
complex empirical orthogonal functions. Evidently, tem, it is pertinent to include the approach of dy-

there are some gaps beyond this stage that need to namic interpolation where a numerical model, ca-

be filled. The review will be cast in terms of the com- pable of reproducing the feature of the region, in-

ponents of the two systems. It will include some gests observations (data assimilation) and predicts

algorithms which could possibly indicate direction the required location of the feature. Finally, in Sec-

for the development of the expert systems using the tion 8 we describe an effort of feature extraction

space-time interpolation concept. from 4-D model outputs available on a regular grid.
The Center for Air Sea Technology has implemented

The intent of this publication is to show how dif- these techniques in a visualization case study us-
ferent approaches and modules can be put together ing the DieCAST model for the Gulf of Mexico (Di-
for the OFI process by reviewing a few typical al- etrich et al., 1993). The three-dimensional features
gorithms from each category. The discussion brings of the eddies extracted are sharp, and these eddies
out the essence of each approach by including all rel- are tracked well as they traverse toward the western

evant details of the illustrating algorithm chosen. Gulf.

This will provide the reader with a full flavor of the 2. SATELLITE OBSERVATIONS
capabilities as well as the intricacies of the proce-
dures. However, the review, by design, is not corn- Apart from satellite data, observations of the
prehensive. ocean are quite sparse and inadequate to corn-
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pletely determine mesoscale ocean features. There- While using GEOSAT SSH, the surface GSNW is
fore, investigators must depend on satellite obser- estimated as the northern region of abrupt change
vations that are abundantly available. For their op- in slope to near zero of the SSH that crosses the
timal utilization in feature identification and now- stream. The estimation error is assumed to be of the
cast/forecast activity, their inherent characteris- order of ± 14 km. Another definition of the feature
tics, advantages and drawbacks must be understood is the Surface Axis, which is the locus of maximum
fully. downstream velocity. The subsurface axis is defined

as where the 120 C isotherm crosses 500 m depth.
Altimetry from satellites, like GEOSAT, pro-

vides global coverage. However, these data are For practical applications to feature models and
available only along satellite tracks that are sep- OTIS, the often-used criterion is the subsurface
arated by distances comparable to the dominant NW location, defined as the region where the 15 C
scales in the GS regime. Another problem associated isotherm crosses 200m. Since satellite observations
with the use of altimetry is that the relationship of can provide only surface definition, the subsurface
the measured SSH to the geoid is unknown. Sub- characterization may be determined in two ways:
traction of the time-averaged altimetry data from Use the statistical relationship between the surface
the satellite track data removes the geoid, but the and subsurface locations of the fronts; this relation-
mean ocean circulation signal is removed as well. In ship is derived from empirical data available simul-
spite of these limitations, satellite SSH data have taneously on the front locations at the two levels. Or,
proved useful in data assimilation studies and in the employ statistical-dynamical interpolation (data as-
determination of sea surface variability. similation); this approach dynamically transfers in-

formation from observed data to the entire modelingMultichannel SSTs from satellite lB images pro- domain.

vide global coverage of the World Ocean. The im-

ages can be used subjectively or objectively to lo- 4. EDGE DETECTION ALGORITHMS
cate the position of the GSNW. However, SST data
may be incomplete due to cloud cover, and atmo- It is well known that the conventional edge
spheric moisture contamination may not be totally derivative operators are essentially high-pass filters
corrected. Year-long averages for 1986 indicate that that are sensitive to noise and not suitable for ana-
only 50 percent of the Gulf Stream, 50 percent of lyzing oceanographic satellite images. In ocean cir-
the warm rings, and 25 percent of the cold rings culation applications, the mesoscale fronts and ed-
were visible in the satellite IR (Perkins, 1993). Even dies are well defined and continuous. Thus for edge
with a carefully-culled data set, which is composed detection from satellite imagery, algorithms must be
of time periods with good IR coverage, it was neces- robust, take advantage of this broad characteristic,
sary to build composite data over ±2 days to define and reject fine structure while retaining edge sharp-
the GSNW and ring locations. ness. However, gridded data from model output are

not as noisy, and gradient-based algorithms are able
3. DEFINITION OF GULF STREAM FRONT to extract mesoscale features from these data. We

will elaborate on this more in Section 9.
The Gulf Stream front, depending on data type

or the application, is defined in several ways. Using 4.1 Navy's Cluster Shade Edge Operator
SSH and SST, the feature has been defined as
the surface NW. From AVHRR imagery data, it is The edge detection algorithm developed by
defined as the maximum temperature gradient on Holyer and Peckinpaugh (1989) is based on cluster
the north side of the stream, except for shingles. shade texture measure, which is derived from the
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gray level co-occurrence (GLC) matrix. Although it neighborhood is assigned the computed value of
has been known that the GLC matrix contains edge S(Ar, Ay). In other physical applications, image
information (Conners et al., 1984), it had not been analysis is performed with several (Ax, Ay) combi-
used much for the purpose. nations. However, Holyer and Peckinpaugh (1989)

found that the edge detection performance of the al-
the'duster shade measurex, which is essentially the gorithm is invariant to the choice (Ax, Ay). Thus,

for the sake of simplicity and computational effi-
third central-moment of intensity levels. Depending
on the distribution of pixel intensity levels, this ciency, they chose Ai = Ag = 0. With this choice,
measure can be positive or negative. Thus, an
edge will be indicated from the zero-crossing of
this measure. The mathematical formulation of L-1
the algorithm has three steps: Wi) computation of P(i, i) = P(i), and p, = p = DiPW. (5)
the GLC matrix; (ii) computation of the cluster i=0
shade edge measure; and (iii) determination of the This gives
significant zero crossing.

L-1

Computation of the GLC Matrix. Its (i,j)th element, S(Ax, Ay) = 2E(i -- 1 )3p(i). (6)
P(i,jjAr, Ay), is defined as the relative frequency i=0
of the pixel-pairs, separated by (Ar, Ag), one withleAel wDetermination of Significant Zero Crossings: Because
intensity level i and the other with intensity level the cluster shade measure is a third moment fromFor anMN array ofpixels with0, 1,..., L-lIas the te sersdemsreiathrmo ntfm
leel ofMNarray of ie ity, defite aa , Lm - 1asthe the mean, it changes its sign from positive to neg-levels of of in tensity, define a ma pping, f(m , n), thatat v asi go sf m a p st vey k w d n i hb r
assigns intensity level to the pixel (m, n). With this, ative as it goes from a positively-skewed neighbor-
P~i,itAz, Ag) is defined as hood to a negatively-skewed one. The values are

largest in the vicinity of the GSNW. The values are
M-AxN-Ay positive to one side and negative to the other side of

P(i,j[Az, Ay)= E_ E_ A (1)
m)=1 A1 ) the wall, and the transition point from the large pos-
m ---1 n---1

where itive to large negative value of the measure indicates
the GSNW.{ if f(m, n) = i, and

A = (M-&)N-Axy f(m + Ax, n + Ay) = j lb determine significant zero crossings, overlap-
0 otherwise. ping 33 pixel neighborhoods are examined in terms

(2) of their cluster shade measures. A '0' is assigned to

Computation of the the Cluster Shade Measure: This the center pixel if the absolute value of its cluster

measure, denoted by S(Az, Ay), is defined as shade measure is less than a pre-defined threshold

L-1 value. Otherwise, the neighboring eight pixel val-

S(Ar, Ay) = E (i +j - - pj)3P(i,jIAr, Ay) (3) ues are examined. If the absolute value of any of
i,j=o them is larger than the threshold value and is op-

where posite in sign from the center pixel, a '1 is assigned
to indicate an edge. Thus, the entire image is con-L-1

(Ai, Ji ) = E (ij)P(ij]xt,Ay). (4) verted into Os and Is, the edges being indicated by
ij=o a two-pixel wide line; it is two-pixel wide because

the algorithm detects both positive-to-negative and
Computations are performed in local, overlap- negative-to-positive transitions of the cluster shade

ping neighborhoods, and the center pixel of the measure values.
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This algorithm indicates the need to account for their applications mainly geared to the estimation of
cloud cover in analyzing the AVHRR images. It is the GS axis. The present URI algorithm is the one
suggested that masking procedures could be used for developed by Cayula and Cornillon (1992), hereafter
this purpose, but no particular algorithm has been referred to as CC92.
outlined. URI Edge Detection Algorithm: CC92 developed

4.2 URI Edge Detection Efforts a sophisticated algorithm to objectively define ocean
fronts using AVHRR data. This algorithm is de-

Evaluation of five edge detection algorithms: scribed in some detail in the following, as its objec-
Cornillon and Watts (1987) evaluated five different tive methodology combined the physical properties
methods of detecting the GSNW. GS maps from of the SST and clouds, and complemented them with
155 AVHRR images were analyzed to locate the statistical methodology. Although edge detection is
northern edge of the GS off Cape Hatteras, North the main focus of the paper, the problem of cloud
Carolina. One method was the subjective location detection is also addressed since unidentified clouds
of the northern edge by the analyst; the other can lead to erroneous edge detection.
four involved the objective location of the edge by
computer using the various statistics of the SST Cloud Elimination: The removal of cloudy re-

field. Specifically, the quantities considered were: gions is one of the major problems in determin-

maximum SST gradient (calculated over a 3 x 3 ing fronts from SST. The algorithm performs a two-

pixel box), maximum SST (pixel-by-pixel basis), dimensional 3 x 3 median filtering on the original

maximum variance (calculated over a 7 x 7 pixel picture and removes the most obvious clouds iden-

box), and a change in the skewness of the SST tified in the following four steps. The first two

distribution (calculated over a 5 x 5 pixel box). The steps use thresholds on temperature and temper-

resulting locations were compared with the location ature gradients determined from the fact that the

of the 15 deg isotherm at 200 m (Tls) determined clouds are colder than the ocean and that they are

from the inverted echo sounders (IESs) moored on characterized by high gradient magnitudes. The

the sea floor. The best method that yielded the cloudy regions, so determined, are put through two

smallest rms difference from the IES-derived T1,% more steps to ensure that the regions are really

was the subjective one; the surface front was located cloudy. Unlike a real edge, gradient vectors in-

9.0 km shoreward of T15 with arms difference of 14.3 side the cloudy region are not coherent, yielding

km. The best objective technique used skewness of a smaller magnitude of the gradient sum as corn-

the SST distribution: Each pixel in the image was pared to the sum of the gradient magnitudes, i.e.,

replaced by the skew of the twenty-five SST values R = JE'=VTi1/Z•=.IVTiJ is small, where VT, is

obtained from a 5 x 5 pixel square centered on the the temperature gradient at the ith pixel. Thus,
pixel. The skew changes sign when a step in the SST the third step classifies the suspected cloudy regions

data, such as the GS northern edge, is crossed. The from Steps 1 and 2 as cloudy if R < .3 and clear if
GSNW located from the skew images was found to R > .7. For the regions in the range .3 < R < .7,
be 14 km shoreward of T15 in the mean with a rms the cloudy regions are bulky, whereas the edges are
difference of 18.2 km. In general, the more spatial elongated profiles. Thus, a fourth step classifies the
information used, the better was the estimate. suspected region as cloudy if the aspect ratio (larger

eigen value of the spatial covariance matrix divided
As a part of their AVHRR data analysis at URI, by the smaller eigen value) is greater than 6.

Dr. Cornillon and associates have done a consider-
able amount of work on developing methodologies to Histogram Analysis for Frontal Specification: For
objectively identify features from the SST data, with window level analyses, the CC92 algorithm di-v•es
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the total picture into overlapping windows of 32 x where X is a population. The idea is that if the
32 pixels and performs the histogram analysis and correlation between neighbors is close to unity, or
tests for a two-population hypothesis as follows. Let the variance is small, as would be the case for water,
h(T) be the height of the histogram in the interval then yx will be small. Thus, a threshold, r, can be
denoted by T. Further, divide the data into two defined so that yx > r will classify the region as
parts, T > r and T < r, and define clouds. Based on their experiments, CC92 chose two

Nl (r) =)N N 2  thresholds, one for cold (r = 4) and the other for the
S2(7) (7) N-"warm (r = 8).

where It is quite possible for the histogram analysis

S =r) =i I[T - p&r')]2h(T)/N,, to give a bimodal histogram suggesting two distinct
a. temperature subgroups without having an edge. For

with {fln : T < r} and {fl 2 : T > r}; Ni = there to be an edge separating the two subgroups,
-TEn, h(T) and 4i(r) = EYTEf, Th(T)/Ni. Also, each of the two subgroups has to form a connected

define subset; i.e., for a given pixel that is not close to

NN2 -Pan edge, the neighboring pixels should belong to

(N1 + N2)2 [pJ(r) - p2(r)] 2 . (8) the same population. Thus, after eliminating the

Then the total variance of the window data can be cloudy region temperatures, CC92 apply a Cohesion

partitioned as: Algorithm that is based on three ratios:

Sto9 = Je(r)+ Jb(r) Cd= -,i=1,2, c = R, + R2

TI + T 2 '

where J((i-) is the within-subgroups variance and with Ti and R, are defined as

Jb(r) is the between-subgroups variance. Let ? = font
maximize 0(r) = Jb(r)/Jtt'(r). Assuming Normal = : y E [N(z)f X]Vx E fl,1I,
distribution, R, = I{(z, y): y E [N(z) lnfli ]Vz E ni}I,

0(r•ot) = 2/7r = 0.63. where 1.1 defines the cardinality of the set, and .N(z)

Based on the result: defines the neighborhood of the pixel, z, as:

Pr{ (-ropt) < 0.7} = 0.99 A"(zi 1) = {xij÷I, xi,j-1, xi-Ij, xi+l,.

by Duda and Hart (1973), CC92 chose O(rpt) = 0.7 In fact, to save computations, they used a modified

to provide the threshold to check whether there are neighborhood setN(z,,) = {x,,j, xi,.,+. A thresh-

two different temperature populations in a given old of 0.92 for C and 0.90 for Ci was chosen so that an

window, edge hypothesis within a window is rejected if either
C < 0.92 or Ci < 0.90. Derivation of these thresh-

Having decided that there are two temperature olds is based on probability of error formulation.
populations in a window, they again check whether
one of them could be fine clouds. This is done in Having confirmed that a window contains an
two steps: (1) examine the variability within each edge, the last step in the window level processing

subgroup, as the cloudy regions have comparatively is to specify the pixels that correspond to the edge.

a larger variability; (2) perform a correlation test by First, define an indicator function that assigns to

computing each pixel within the window a digital count, A(x) = 0
ifz E fl1 , and I(z) = 1 ifz E f12. A pixel x is defined

fx= E(Ix - y- E(z - y)I), V(z,y) E X (9) as an edge pixel if I(x) • I(y), y E A"'(x).
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5 FEATURE LABELING physical properties of the pixel x(i, j), viz, distance
and the direction of the pixel x(i, j) from the origin,

After the feature edges have been determined, gray scale intensity, and the edge magnitude derived
the next step in the automatic feature construction using the edge detector algorithm. Thus, p(z,tJA) is
process is to label tLese edges according to the fea- specified as
tures present. For instance, in the GS system edges r(X -LYEV - ,(xpf
can correspond to several types of features, e.g., P(zt[1A)= (2)[ (2I)- expx1 2)
warm eddy, cold eddy, North Wall, and South Wall. where px and Ex are the mean and covariance
Unless the labeling is performed with sufficient ac- matrix of the object A. Probabilities, P(A) are
curacy, the subsequent feature description Will be computed as relative frequencies
faulty. P(A) = n

6.1 Relaxation Labeling Algorithm where nx are the number of pixels in the object A.

In the Navy's algorithm, the labeling is per- Step 2: Iterative Updating: Knowing the probabili-
formed by a nonlinear probabilistic relaxation pro- ties, pk(z, t), at iteration k, they are updated as
cess (Krishnakumar et al., 1990a), which requires pk(zt)1+ qZ(z))
an initial guess of the probabilities of edge segments p•+l(z, t) = O[ CPA M + q(z

belonging to each feature. This first guess is usu- F e1- (z, t)

ally available from a previous analysis and moving + ar c the ins

it forward in time (Holyer and Peckinpaugh, 1990). where q(z) am called the updating factors, a) are

The relaxation algorithm is composed of two steps. temporal weighting functions, and pA(z, t') is the

The first step computes a priori probabilities from probability at a prior time t' < t. In some cases,

a ground truth data or a recent mesoscale analysis. the temporal dependence can be removed by setting
The second step iteratively updates these a priori ak = 1. The updating factors are computed at eachThe ecod sep teraivey udats thse prori iteration as
probabilities until a consistent labeling is achieved.

Amathematicformulation by Krisbnakumar et al. q\(z) = (1/rn) ,.,,X,,(z,
(1990a) is as follows.

where r),(z, y) are known as the compatibility co-
Mathematical Framework: Let A = {A1 ... , Am } efficients and behave like a correlation coefficient.
be the set of possible feature labels that can be as- For example, - 1 < r,(z, V) <_ 1; it is positive if X on
signed to pixels x within a scene. Correspondingly, x co-occurs with X' on y, negative if they frequently
let pk(z,i) be the probability that the pixel x is as- do not co-occur, and equality with ±1 is achieved
signed labels A after k iterations of the relaxation if the co-occurrence/nonco-occurrence is perpetual.
algorithm. The probabilities are allowed temporal The iterative process is terminated when the differ-
dependence so as to take advantage of the temporal ence between two successive probabilities is negligi-
continuity of feature evolution. ble. For greater detail, see Kittler and Illingworth

Step 1: Estimation of a priori probabilities: Let (1985) where the method of their computation is ex-

p°(z, t) denote the initial probabilities assigned to plained.

the pixel x(i, j) at time t. Then, using the Bayes The choice of the temporal weighting function
theorem, is arbitrary and considered to be time varying. In

pA(z, t)= P(zXtl))P(A) certain situations, the use of this formulation may
"\ p(Z, tI A)P(A) be problematic; a clear direction towards its choice

where P(A) probability of occurrence of the feature A needs to be formulated. In description of the Navy's
and p(z, tIA) is the conditional (multivariate) proba- expert system, a, = 1 (Krishnakumar et al., 1990b,
bility density function of a vector X derived from the 1991).
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5.2 Contour-Following Algorithm of the front. The mean and covariance structure
of the feature, derived from climatological records,

The URI system does not have a contour labeling are combined with the partial observations on the
algorithm per se. However, as a follow-on to the feature for an overall estimation of the feature.
edge detection step, the system connects the pixels The mean provides an anchor, while the covariance
identified as an edge to form a continuous curve structure constrains the estimated solution to con-
to give it a frontal shape. Thus, this algorithm form with the observations. The success of this ap-
identifies p different contours without assigning any proach depends on the accuracy of the mean front,
label. This is as opposed to the Relaxation Labeling the variance of the front at different locations, and
Algorithm where each pixel, identified as an edge the adequacy of the covariance parameterization.
pixel, is assigned a feature label. The next approach, based on space-time interpola-

The contour following algorithm assigns to the tion, overcomes these drawbacks and incorporates

nth pixel of the pth contour the paired value of(n, p). the past information. The last approach is that of dy-

Among the edge pixels detected at the window level namical interpolation where the sparse information,

that are neighbors of (n,p), the algorithm selects that may or may not pertain to the front, is assim-

that pixel as (n + 1, p) which affects the least change Hated into a dynamical model to provide a synoptic

in the direction of the contour. However, no pixel update.

is added if the direction has to change more than For the statistical approach, four algorithms are
90 deg in 5 pixels. When no previously-detected reviewed. Not surprisingly, these are based on the
edge pixel can be added to the contour, the algorithm well-known techniques of Optimum Interpolation,
examines the ratio R = IZ' 1VTi[/'= 1 IVTil in a Empirical Orthogonal Functions, Contour Analysis
3 x 3 pixel window centered on the last contour and Kalman Filtering, which are often used in mete-
pixel, where VT, is the temperature gradient at the orology and oceanography. The first method, known
ith pixel. If R > .7, then the algorithm adds to as the Pathfinder algorithm by Horton (1989), is ap-
the contour that one pixel from the 3 x 3 window plied for the objective determination of the surface
for which the scalar product of the gradient vector GSNW The algorithm is based on the optimum in-
at the pixel point with the gradient vector at the terpolation technique of Bretherton et al. (1976)
last contour point is the maximum. Because the t interpolate observations on the GS location us-
algorithm relies only on the first neighbors of the last ing the GS climatology as the first guess. The sec-
contour edge pixel, it is capable of resolving more ond method is based on the well-known empirical
than one front in a window. Finally, the algorithm orthogonal functions (EOF) and applied also for the
eliminates isolated edge pixels by deleting contours location of the surface GS axis. This technique, de-
with fewer than 15 pixels. scribed by Molinelli and Flanigan (1987), was origi-

6. SPATIAL INTERPOLATION nally proposed by Carter (1985). The premise is that

ALGORITHMS: DETERMINATION OF the first few CEOF modes incorporate the correla-

THE GULF STREAM LOCATION tion of the relative location of the fixes along the GS
axis. These two algorithms, however, focus on the

Because of cloud cover, the labeled edges pro- current epoch of estimation and do not incorporate

vide quite sparse information on the GS front, and information from the past (or the future) estimation.
it must be filled via interpolation. There are three The contour-melding procedure by Mariano (1990)
different approaches at this point. The first one is utilizes the phase speeds computed from the past
purely statistical, which is based on empirical infor- and future estimations to perform an overall inter-
mation on the mean and the covariance structure polation of the GSNW position. Chin and Mariano
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(1993) take it one step further and cast the estima- a specified downstream anomaly z. Then 1 can be
tion problem in terms of a Kalman filter type formu- expressed using a simple statistical model:
lation.

yj = 1j +ef, j= 1,...,n (10)
This section is organized as follows. We start

with two purely statistical algorithms that combine where statistical expectation of is zero, i.e., C(yj) =

partial information on a feature with empirically- 0. The observed GS positions are contaminated by

derived means and spatial/temporal correlations. random measurement errors, cj, that are uncorre-

This is followed by work using a semi-statistical pro- lated with one another, i.e., $(Cik) = 6jkO,, with

cedure. Dynamic interpolation, or data assimila- 6jk being the Kronecker's Delta function and o2 the

tion, is perhaps the best known technique in this measurement error variance. The measurement er-

category. It combines output of a numerical ocean rors are uncorrelated with GS position anomalies,

model with observations that may not necessarily be i.e., C(Ci ?k) = 0. The statistical model is completed

on the feature. The feature is then extracted, us- with a specification of the covariance between vari-

ing some specified formulation of the feature defini- ous observation pairs in terms of the covariance ma-

tion. OFI work using AVHRR data, done by Cornil- trix A = (Ai) where

Ion and colleagues, pertains to a different type of A,, = £(yipj) = C(1i~j) + obij
semi-statistical approach in that it exploits the phys- 26,j.

ical characteristics of the variable underlying the = Cij + ae

feature, and uses statistics to establish thresholds to The covariance, Cij, is a function of the GS spreads

test the sequential hypotheses to extract features. (variances) oi and aj at downstream distances a and
zj and the correlation function, c(xz, zj). Thus,

6.1 The Pathfinder Algorithm

The Pathfinder algorithm is based on the mean
and covariance concept. It converts observed (lon- Let the covariance of q = 7(z) with each Y be
gitude, latitude) positions into (downstream, cross- given by
stream) anomalies relative to a mean path. Then the Cj = C(f(X)•j).
approach assumes that the GS meanders, in terms of
cross-stream anomalies along the mean path, form a With this setup, we can estimate n(z) as a linear
second-order stationary process, i.e., the covariance
between two cross-stream anomalies is a function of
the downstream distance between them. The imple- j=
mentation of the algorithm is described in terms of
the objective analysis technique of Bretherton et al. where the coefficients flw are derived from a least
(1976). This 01 technique is used to estimate the squares formulation as follows. Let Y = ((,., y- Y,
GS path from a limited number of observations on C tx tranposiion.Th. , acwhre t r epr es t

the S psitins ith aryng aes.matrix transposition. Then, according to the leastthe G S po sitions w ith varying ages. s u r s f r u a i n e m n m zsquares formulation, we minimize

The brief description given below provides elab-
oration of the statistical details of the method. .(7- _)2 = C(7(z) - a'Y)2

= e[r7(z)2 
- 2e'Yii(z) + a'YY'a]

Let (xj, yj), j = 1,..., n be given observations on

the GS axis, where zj is the downstream anomaly = CXX - 2a'C + a'Aa

and yj is the measurement on jth cross-stream = [a-A-'C]'A[a - A-1C]

anomaly r/•. The problem is to estimate 7 = ,gz) for + CQ2 - C'A-IC. (12)
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Note that the last two terms in eq. (12) are For further details on the operational implemen-
independent of a, and the first term involving a is tation of the model, see Horton (1989), where he sug-
a positive definite quadratic form in the matrix A. gests ways of using old observations. GS front lo-

Thus, the minimum is obtained by setting cation estimation errors are due to several sources;
some of them are: observation error variance, vari-

a = A-1C, ance of the meander envelope around the mean front
location, the assumption of stationary covariance

and the estimation error is given by and the choice of the corresponding correlation func-

tion. Based on his simulation experience, Horton
S- a'YP = - C'A-'C (1989) concludes that:

n

= C., - E C,,C.At. (13) * The mean path errors are not well understood.
r,---1 The variance of the mean path error might

where Ar° is the rsth element of A-1. This deriva- be typically about 25 percent of the meander

tion is similar to that in Bretherton et al. (1976), but envelope.

simpler due to the use of the matrix notation. Thus, * The effect of the mean path errors can be reduced

y(z) for a specified z is estimated as: by modifying the correlation function used in the
optimum interpolation, which lets the observa-

9(z) = a'Y tions modify the mean path.

= C'A-1Y e Using the optimum interpolation method, the
"n (n ) errors in the interpolated paths were below 50

=E)j AJklh (14) kin, even with observational gaps of up to several
=1 \k=1 / degrees longitude. However, he conjectured that

In both Horton (1989) and Bretherton et al. (1976), the inadequate sampling, coupled with atypical
eq. (14) has been written as: meanders such as ring-formation events, might

produce errors two to three times as great.

O(z )f C.j Alk "k) 6.2 Complex Empirical Orthogonal Function
\ k=1 1 Algorithm for the Gulf Stream Path

This unconventional notation is liable to cause con-
fusion, since AT.' is interpreted as 1/Ajk and not as The empirical orthogonal function (EOF) ap-

Aik. proach is another statistical approach commonly
used in the literature to capture the overall correla-

Horton (1989) makes the basic assumption of tion of a space-time feature in a few vectors. These
stationarity of covariance in terms of the down- vectors are the eigen vectors of the empirically-
stream coordinate z. For two points at downstream estimated covariance matrix of the feature and are
distances z and r, he formulated his equation (14) referred to as the EOFs of the feature. To construct a
in terms of a prescribed correlation function, c, = specific synoptic realization of the feature, one sim-

c(Iz - rj), given by: ply computes a weighted sum of these EOFs, where
the weights are given by the EOF 'amplitudes' cor-

Cgr = cos(2irlz - rl/wl)exp(-Iz - rI1'5 ) (15) responding to the feature realization. Thus, the
EOF approach involves two steps. One is to derive

where w, = 450 km is the wavelength and A is the EOFs from the empirically-estimated covariance
the decay variable, = .00032001 km-3 /2. Thus, matrix of the feature. This step is performed once for
C, = o,,u,.c(Jz - z, I), where a, is the variance of the all subsequent construction (estimation) of the fea-
meander at the downstream coordinate z. tures. The second step requires converting partial
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* Gulf Stream Points

S~Pnearest

Figure 1. CEOF optimization geometry; Pi is an observation and Pnearest is its projection on lineraly
segmented GS path constructed at an earlier step.

observations on a feature realization into EOF am- E• with Aj as the corresponding eigen values. Since

plitudes so that the weighted sum of the EOFs can be E9 is Hermitian, the eigen values A# are real; how-

computed to derive the entire realization. This step ever, the eigen vectors are complex. with this, we

is repeated each time a feature realization has to be can define rotated variables (complex amplitudes)

constructed. Carter (1985) proposed the concept us- c ~w(6
ing complex EOFs (CEOFs) to describe the GS path.c =ew(6

Mo 'hnelli and Flanigan (1987), hereafter referred to where ek* is the complex conjugate transpose of ek.

as MF87, followed it up by developing an algorithm The original discrete GS representation, w, can be

that successively updates the CEOF analyses with recovered from ck as the weighted sum of the EOFs:
a partial set of observations to yield a new fix of the N
GS axis. In this formulation, a location (z, y)= (longi- w = E'-ekCk = Ec, (17)

tude, latitude) is represented as a complex number k=1

w = x+ y. Thus, wj =xj +iyj are the locations along where E = EN = (el,. .. ev) and c = cN -

the Gulf Stream axis at equal spatial distance inter- (CI, • •.-, CNY-

vals, so that th e vector w = ( " ,, ... W N Y, ' in dicatin gAt hi t me wer t ra es epo n s e t
matrix transposition, defines a discrete representa- toheGesiaonungheCO :

tion of the Gulf Stream. Let E• (ukwj), where * in-

dicates complex conjugate and ()denotes ensemble 0 The EOFs, represented by the eigen vectors e,

average. Lot ej, i = 1,., n be the eigen vectors of are obtained from the statistical population of the
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Gulf Stream axis, and thus, entail the overall from the few available GS fixes in a least squares
correlation structure between various locations sense. Mathematically, the formulation is as follows.
oftheGulfStreamaxis; At any time, let pi,j = 1,. .. ,K be partial
However, the amplitudes ck represent character- information on the GS axis in terms of K position
istics of an individual GS realization and vary fixes. An individual pi could be from any source,
from one GS realization to another. including ER and SSH. Then according to the least

squares criterion, we would like to determine a GS,*In general, the overall variability of the system w= .. lectamimzs

can be explained by a small number, say n, of

modes. Thus, a GS realization w in eq. (17) K

can be approximated as the weighted sum of the p,.1 2, (19)

dominant EOFs:

n _where af is the position error variance for P, and
w =ekCk-EnCn, (18) piw is the projection of the observed position p1

k=1
on the to-be-determined discrete GS representation

* We observe from eq. (18) that En acts as a 'basis w; see Fig. 1. The details of the minimization

set' of vectors, and a GS realization is obtained procedure used are standard (see Bevington, 1969),

as a linear combination of the basis set. Writing and are thus omitted.

Ck = ak exp(iWO), we note that weighting with c The minimization of X2 in eq. (19) is nonlinear
results in an amplification as well as a rotation in the parameters ci, i = 1,..., n, and thus requires
of the EOF vector, ek. their initial guesses. These guesses are obtained by

MF87 solved the problem of estimating a GS substituting in eq. (16) a pre-existing discrete GS re-

realization from only a partial information using the alization wo. Since the above minimization requires

CEOF formulation. For this, the partial information the estimation of 2n parameters, corresponding to

is mapped onto complex amplitudes, c,, = (cl,. . .-CnY, the real and imaginary parts of q,, we must have

so that the realization w could be constructed using K > n. The MF87 study indicates that for a GS

eq. (18). The MEF87 implementation was based axis estimation, the number of fixes from SSH and

on empiical data sets derived from 84 realizations AVHRR is typically in the 25 to 75 range, and thus

of the Gulf Stream axis, interpolated at N = 132 quite adequate for estimation purposes.

equidistant points with 10 km spacing along the According to the simulation results of MF87,
GS axis. They could describe the Gulf Stream this procedure provides an accuracy of 30 nmi, the

shapes with as few as n = 10 modes, accounting same as obtained in manual analyses performed by
for 99 percent of the variability. The root mean WSC. However, because the computer optimization
square difference between the 132 estimated and the is automated, it minimizes manual analysis.
empirical GS fixes, with n = 10 using eq. (18), was
~ 6 nmi. 6.3 CONTOUR ANALYSIS

A nonlinear least squares, gradient-search algo- Mariano (1990) came up with a contour analy-
rithm was used to map the partial observations on sis approach for melding different analyses of geo-
the GS axis onto the complex amplitude vector c,,. physical fields, which he adapted for interpolating
The approach is to start with a set of q, i = 1,..., n the GSNW position from gappy information. He ar-
based on a well-defined snapshot of GS, and then op- gued that the combining of two or more different
timally adjust the q until the resulting w deviates fields using the usual weighted averaging or least

12
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Figure 2. Example of contour analysis interpolation of GSNW (Adapted from Mariano, 1990)

squares approach would tend to smear the informa- the same fraction of the arc lengths along each con-
tion on the features. To alleviate this problem, he tour. Mariano's implementation of this correspon-
proposed contouring the various analyses and meld- dence is as follows:
ing the positions of the features as specified by con- eCmueaclnt:Frec otusatwt
tours, rather than averaging the fields. This ap- the Compuiganrl slenth or each cono, s with• k =

proach has the distinct advantage of retaining the the origianal setofpineaclnths as folos (zketk
shapes of the features while appropriately adjust-.1...........and.define

ing the amplitude and phase information. For a Azik = (mik - zj,(k-i)) anid Ayizk = (Yik - Yi(h-1)).

formal but brief description of the Contour Analysis Th n SAy) is the arc length

approach, consider the melding of two fields charac- between Points (zd(k-.1), Yi(k-1)) and (Xik, !Ik). The
terzed by sets, a., i = 1, 2, of contours such that arc length corresponding to the Ith point (from

CI = {Ci(), the first point) is given by

where j represents the contour number, and melding = imI
is to be performed by combining corresponding con-. . ..

tours in the two fields. Let two such correspondiIig The total arc length for the ith contour is denoted

contours be specified by C1 and C2, where the con- b i
tour index j is dropped for notational convenience,.y ,
Then C, are represented by longitude, latitude posi- o Set up correspondence between C1 and C2 : This

tions as correspondence is set up in two steps: (1) First,

Ci {(Zik, yk), k = 1, 2, , n J. (20) for each contour, Ci, fit separate cubic splines
to xs r and 14k as a function of the arc length,

At this stage, there is a need to set up a corre- Sikh (2) From the splines, then interpolate at N
spondence between Cs and C2 in terms of the geo- (the same number for the two contours) of new
physical feature to be extracted. The correspon- points, (X st, Y o), k 1 N at equal arc length
dence is established by selecting points located at intervals, AS, = S,/N. The choice of arc length
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as the independent variable permits melding of interpolated to create the new data sets at equal
multivalued features with an appropriate phase. arc lengths, which were then averaged according to

eq. (21) to obtain the fully-interpolated data sets.ithd tas; aThe weights, Wik were taken to be inversely propor-
lated as; tional to the time between the present gap and the

(2 2 i time of the past and future data. Thus for the past,
(.t, Yk) = ZWikXik, FWikYik (21) Wlk = 1/3, and for the future, "L. = 2/3. Fig. 2d-f

(i=- i=1 ) show another example of similar interpolation.

for k = 1, ... , N, where the weight wit may be chosen Summarizing the Contour Analysis approach to
proportional to the inverse of the error-variance interpolate the gappy areas of the GS positions we
assigned to each position, such that Uwk + w2k = 1. note:

Mariano applied the above contour melding The GSNW is a multivalued phenomenon which
technique to incomplete, time-varying fields to per- has been difficult to resolve. Mariano's approach
form space-time interpolation of the GSNW for 824 is quite ingenious in fitting splines to latitude
cases. The SST data from the AVHRR were mapped and longitudes as functions of an independent
to a common coordinate system and composited into variable, arc length.
two-day groups at the URI, retaining the warmest The approach combines the phase and ampli-
pixel out of approximately ten satellite passes. The tudes of two sets so as to preserve an appropriate
GSNW position was then hand digitized. shape.

Due to cloud cover, the resulting data sets from * Mariano (1988) has applied this approach to
the above operations suffered from several spatial create an atlas of 824 GSNW positions with quite
and temporal gaps that needed to be filled. To satisfactory results.
demonstrate, Fig. 2 adapted from Mariano (1990)
shows two examples of filling gaps in the the GSNW 9 Algorithm performance deteriorates for those
positions using contour analysis interpolation. Fig. cases involving ring-births or strong ring-stream
2b shows the hand digitized GS region on Day 6336.5 interactions.
with gaps between 66 and 580W. The first step to fill * Algorithm performance can be improved by em-
these gaps was to find, in the immediate past (Day ploying two-dimensional phase speeds and also
6332.5, Fig. 2a) and the future (Day 6338.5, Fig. by ing t er- waysion al culate se a se
2c), GSNW records which provided coverage for the by using better ways to calculate these phase
gappy area under consideration. For a proper ap-
plication of the contour analysis algorithm, the two * In simulation experiments performed by Mari-
records were propagated to a common analysis time. ano (1990), he found the interpolation error was
A phase speed was computed by averaging the prop- of the order of 10 km.
agation speed of the local maximum and minimumbetwen he astand utue tme ssumng do- *The largest interpolation errors (50-80 kin) werebetween th e past an d future tim e assum ing a dora -fo n int e m a d r mp tu sin he v c i yinan eat-wet popagtio sped. he ltitdesfound in the meander amplitudes in the vicinityinant east-west propagation speed. The latitudes o 8Wi ahcre
were propagated forward for the past and backward
for the future. With the time synchronization done, 6.4 Optimal Space-Time Interpolation
the contour analysis fitted cubic splines to latitudes
and longitudes of the 'past' and 'future' records as Mariano's approach of using the arc length as
a function of the arc lengths. These splines were the independent variable to interpolate the GS
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Figure 3. Examples of complex GS meanders in 'S' and 'Q' shapes. Estimation errors are indicated
by the size of '+' signs (Adapted from Chin and Mariano, 1993)

path was a major step in being able to resolve the present time. However, the approach was

complex and multivalued meanders of 'S' and 'fW' heuristic. Chin and Mariano (1993), referred to
shapes. It also introduced the use of past and as CM93 in the following, enhanced the Mariano
future observations in computing the GS path at approach by formalizing the concept via a Kalman
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type 'predictor-corrector' approach, while retaining S1 and S2 are matrices of first and second order
the arc length concept. Let p(s, t) = [z(s, t), y(8, tOY operators; wi are independent, zero-mean, Gaussian
be the true GS contour locations at time t and arc error vectors with 4- 'I as covariance matrices; and
length s relative to some reference point. The arc vH, vI and V2 are zero-mean Gaussian random error
length s of p is discretized so that the final GS is vectors with covariance matrices diag(- 1,. .,-1),
represented by a vector p(k) whose ith element p a-'I, and a-'I.
corresponds to arc length sf = iAs at time k~t.
Since p is yet to be estimated, there is no knowledge Writing dh = Ph+1 - Ph, then eq. (23) can be
about its arc length. However, there is no confusion

as far as notation is concerned. Let Ak, i =l,• ,mk (ph) = (I Pk) (Pk-1) + (w1h) (25)
be the observation points digitized from the kth SST d 0 1 dk1 W2k

image. It is assumed that the discretization is fine
enough such that, up to some quantization error, the The Kalman formalization provided by eqs. (24)
arc length, &,, associated with the observed data Pik and (25) is the same in spirit as that of Marn-
corresponds as &, = jAs for some j. Then their ano (1990), except that it employs two-dimensional
space-time interpolation is obtained by that p(s, t) phase speeds and, in addition, is optimal in the least
which minimizes squares sense. These equations can be solved by pro-

K m(k) cedures given in Gelb (1974) and Lewis (1986). How-

Z jvs(k)IIj, _ - p(sk, kAt)112  ever, there is an inherent difficulty in that the spa-
k=l i=1 tial coordinates of the digitized points are unknown;

+ fTf P112 + C211i IP1I2] dsdt (22) thus the observation-data correspondence matrix H
S(82is also undefined. Also, the origin of the spatial co-
OT 2 ,62 1 dsdt ordinate s is difficult to define. The arc length coor-
+10 J dinates, 8, must be determined concurrently as the

where the time variable is discretized as t = kAt, contours are interpolated.

k = 1,. . ., K, and Yj are the weights indicating The above problems are alleviated by taking an
confidence in the observations; the constants ae and "adaptive approach where best predictions of the

a2 control spatial continuity (tension) and linearity GSNW contour data given time k are used to esti-
(smoothness); and similarly, the constants A and mate the positions, i.e., arc length indexes, Aj(k), of

#2 control the temporal constraint and linearity, the measurement along the contour". An iterative
Equation (22) can be interpreted in terms of Kalman procedure is employed where for each time index k,
filter-based equations as: s,(k) and p(k) are estimated alternately using the

(P \ _Ii 0 _ph._ (+ w1h\ (23) best guess of the other. The observation-data corre-

p(+ 1 -1 21 ph W2k ( spondence matrix H(ph, k) in eq. (24) is evaluated

and as the II(p1(k - 1), k) in the forward filter and as

qk H(pk, k) (VHk i(Pbp(k + 1), k) in the backward filter where ip1 (k) and
S S ) Pk + V1) (24) pb(k) the forward and backward filtered estimates.

0 S2  ( V2h In other words, a correspondence is set up for the ob-

where q is the observation vector and H is the servations at time k with the curve predicted to time
data-estimate correspondence operator with its (i, j)th k from an estimated contour at time k - 1. The itera-
element defined as tion procedure was terminated after convergence or

= I1 if 1 = jAs after a fixed number of iterations. Because of gaps
ho =0 otherwise; in measurements at any time k, the estimates of the
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previous frame, Pb.- i, are often the best guess of the are N-vectors defined on the model grid, G; the
general shape at time k. observation vector, T, is an M-vector defined on the

observation grid G0. Usually, M << N, and T.The correspondence referred to above is per- alone cannot provide an adequate representation of

formed 'hierarchically', first using large-scale Yea- aoecno rvd naeut ersnaino
ormed 'hlowerarchically', lorst using largen-uscae if- T. Thus, assimilation is performed, resulting in an

tures', followed by smaller, local and then using 1n- estimate on Gm to provide initial conditions for the

flections of the curves. Based on the interpolation of numerical integration of the model equations.

160 frames, CM93 conclude the following:

We assume there exists a mapping D(Cm) =
- The algorithm, in general, is quite successful G.. Then T., the true state of the ocean at the

in reconstructing features like the 'S' and 'A' observation grid, can be written as T. = D(T). Often
shapes. Fig. 3 is an example of two such D is assumed to be a linear mapping so that:
realizations. To = DT. (26)

* The Kalman-type formulation provides the er-
rors of estimations as shown in Fig. 3. The assumption here is that both the model

values and the observational data are unbiased
• The algorithm is unable to resolve some fast estimators of the true state of the ocean, and that

movements of the meanders and to detect trans- the optimal combination of the two will lead to an
formations of the meanders into rings. estimator of T, which has a smaller error variance

a The algorithm is dependent on the digitization than either of the two. Under the unbiasedness

process of the GS positions using SST data, which assumption, we can write the following linear model:

in itself is quite a laborious process. (The work of (Tm) = (TT) + (em) (27)
Cayula and Cornillon (1992) should alleviate this To eo

problem to some extent). where em and e. are vectors of zero mean random
errors in the model output and observations, with

* -Me present-day pattern recognition and match- Em and E. as their respective covariance matrices.
ing algorithms have yet to realize flexibility and It is reasonable to assume that the errors in T, and
sensitivity of trained personnel'. Tm are statistically independent. Then, the least

squares solution to the true state T is obtained by
65 Dynamic Interpolation minimizing the quadratic functional:

The dynamic interpolation approach combines Q = (Tm - TYE)';(Tm - T)

dynamic information from a numerical model with + (T. - DTYEo'(To - DT) (28)
the actual observations on the thermo-dynamic where the prime indicates matrix transposition.
structure. It is not necessary that the observations Navon and Liegler (1987) describe several efficient
be on the feature to be extracted. The information procedures to affect the above minimization.
content in an observation is first spread in the neigh-
boring areas statistically using spatial and tempo- The estimate, t, of the true state of the ocean,
ral covariance functions, and then communicated T, obtained from the above minimization procedure

dynamically via numerical integration. The three- is referred to as dynamical interpolation. It reflects

dimensional numerical model output is then sub- the information content of the dynamical model and

jected to a feature detection algorithm. the observations. Appropriate algorithms can be
used for OFI. The modelers in DAMEE-GSR used

Briefly, let T be the true state of the ocean, which the 15 deg isotherms at 200 m depth algorithm
is to be estimated by combining the model output, on dynamically interpolated output to derive the
Tm, and observations T.. The vectors T and Tm GSNW (Perkins, 1993).
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6.6 Eddy Detection further details of the algorithm, see Szczecchowski
(1991).

Eddy detection from the labeled edges is per-
formed in either circular or elliptical 3hapes. The Other algorithms for circle detection that opti-

algorithm used in the Navy's SAMAS is the Hoigh mize some distance function between the center and

transform (Lybanon and Holyer, 1991), which can be the edge pixels have been considered for eddy de-
tection. The Thomas-Chan algorithm minimizes a

used to detect lines and curves in pictures. It es- teotical area-based errorithnctin( mas a

sentially involves computing convolutions of the la- Chan, 1 tea n erpii fu latfo r The en-
bele edes ithvarius inay krnel reresnt- Chan, 1989) to give an explicit formula for the cen-

beled edges with various binary kernels represent- ter and radius of the circle in terms of the edge-pixel
ing a possible shape that can be ascribed to the la- coordinates. The Landau (1987) algorithm is an it-
beled edges. The curve selected is the one for which erative algorithm which minimizes the mean dis-
the kernel shape optimizes the convolution. Thus, tance between the edge-pixels and the center. The
if circles are to be assigned as eddy shapes to the Albano (1974) fits a general conical curve using the
labeled edges, then the kernel library of possible least squares formulation. Peckinpaugh and Holyer
shapes consists of circles of Is of possible radii. Duda (1994) performed a relative evaluation of these and
and Hart (1972) provide a general description of the the Hough transform circle detection algorithms; the
circular Hough transform. The solution by this pro- Thomas-Chan algorithm provided the best overall
cedure is equivalent to the least mean squares so- accuracy in the tested examples.
lution when the edge pixels are assumed to be con- 7. TWO GULF STREAM IDENTIFICATION
taminated with identically and independently dis- SYTEMS
tributed random noise.

Szczecchowski (1991) proposed the Marr-Hildreth At present, the surface NW location is deter-
operator as an edge detector. The Marr-Hildreth op- mined subjectively by the Naval Oceanographic Of-
erator performs the convolution fice Warfighting Support Center (WSC) using pre-

E(z, y) = V 2G(r) * l(x, y) dominantly AVHRR data. As discussed earlier, this
operation may be greatly hampered because of cloud

where V2 is the Laplacian operator, * represents the cover, which conceals ocean features. In cloud-

convolution, G(r) is the Gaussian function in polar covered areas, the operator must make a completely

coordinates subjective estimate of frontal location, usually based
on its last known position. This procedure, in ad-

G(r)= !exp(_2 2  dition to being ponderous and time consuming, is
T \20r 2  quite subjective. There obviously is an urgent need

to develop an automatic and objective procedure toand I(z, y) is the two-dimensional image intensity. pefrthsedosbtiotatak.TeNy
To obtain a better delineation of the eddy curve, con-

has taken a lead in this task and, in a systematicvolutions are performed at more than one value of
manner, identified and constructed various compo-

a. The zero-crossings of E(z, y) determine the eddy. nents of feature identification as a part of their Semi-

The eddy center is determined from the mean ofthe Automated Mesoscale Analysis System. Included
pixel locations enclosed within the curve. The Marr- here also is the URI system. Although it is not as up-
Hildreth operator possesses several desirable prop- to-date as SAMAS, the URI algorithm development

erties: It attenuates high frequencies; there is only seems to be headed in the direction of a complete sys-

one free parameter, which is the scale parameter, a; tem. The following, although somewhat repetitive,
no thresholds are needed for edge detection; and, the is provided as brief and up-to-date information on

resultant edges form a closed continuous curve. For the two complete systems.
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IIFEATURE LABELING OTHER SENSORS
AND SYNTHESIS ANCILLARY DATA

IIMAGE SEGMENTATION 
I

SATELLITE IMAGE

Figure 4. A three-tiered approach to automated oceanographic satellite image analysis. (Adapted
from Holyer and Peckinpaugh, 1990)

7.1 Navy's Semi-Automated Mesoscale

Analysis System (SAMAS)

A three-tiered approach of SAMAS is shown in Feature Labeling and Synthesis: Each frontal-

Fig. 4, and a functional block diagram is shown pixel determined in the last step is assigned a fea-

in Fig. 5. Although the individual components ture lable using the Nonlinear Probabilistic Relax-

have been described above, a brief description of ation algorithm. The algorithm assigns different

the entire system is given here for the sake of feature probabilities to each pixel, which are im-

completion. proved by successive iteration taking into consider-

ation previous analyses and any new information.
Image Segmentation: Starting with a satellite im- The pixels under each feature are then spatially in-
age, the digitized gray levels are converted into a terpolated to construct a continuous GS front or a
gray level co-occurence matrix (GLC). The GLC is circular eddy from fragmented renditions of these

then used to compute the cluster shade measure, features. The GS front is interpolated using the
S(Ax - 0, Ay = 0), in overlapping local neigh- complex empirical orthogonal function (CEOF) ap-

borhoods. The center point of the neighborhood is proach. The CEOF's represent the statistical in-

then replaced by S(,z = 0, Ay = 0). Because this formation extracted from empirical data on the GS
measure is the third central moment of the GLC, it front. For each individual image, the modal ampli-

changes sign whenever there is a significant change tudes are computed. A weighted sum of these CEOF
in the distribution of S over the neighborhood. The vectors, with the modal amplitudes as the weights,

specification of the zero-crossings then specifies a provides an estimate of the GS front at the present
frontal pixel. epoch.
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Figure 5. Functional block diagram.

Although not emphasized in Section 6, SAMAS 7.2 U1rs Feature Detection System
incorporates an eddy synthesis module also, which At present, the UJRI feature detection system
uses the circular Hough transform (Duda and Hart, does not have all the required components. How-
1972). This method is capable of finding the most ever, incorporation of a few well-tested modules can
prominent eddies and gives the center (zx, y,) and make this system a good competitor to the Navy's
the radius r even when significant parts of the edge SAMAS. Their edge detection algorithm is fairly well
points are missing. advanced. Because, the presence of clouds in the im-

age can distort the edges, there is a major emphasis

Oceanographic Expert System: The expert Sys- on isolation and removal of clouds from the images.
URI has performed a considerable amount of analy-

by tracking their evolution tepterms of the speed,at sis of the AVHRR satellites images of the North At-
bytrackionang their evoioninca term of aIth serve, an lantic GS region and provided the resulting edges to
rection and size (in case of an eddy). It serves an the academic community for further research. The
additional function in that it provides a first guess algorithm relies on a combination of methods and
of the feature positions for the Relaxation Labeling operates at three levels described below: the pic-
Algorithm. ture, the window and the local level. The algorithmic

steps are shown in Fig. 6.

Interactive Editors: The Navy system provides an
interactive editing capability for the analyst to view
the results and delete and modify the features that Picture Level: This analysis is performed at the
are automatically synthesized. overall picture level. The main function at this level
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Window Level: At this level, the median-filtered

I DATA INPUT data from the Picture Level are examined closely
preprocessing before applying in 32 x 32 overlapping windows. Each window

the algorithm (Appendix A) is processed independently for the presence of an
Sedge. Even at this level, minute attention is paid

Oetectin/removaI of the most
obvious clouds st the PICTURE to removal of clouds that are fine at this stage. A

LEVEL and median-filtering (Appendix A.1) histogram analysis of the temperature values within

+ the window is performed. In the presence of an edge
First Step of fine cloud detection

at the WINDOW LEVEL: within the window, the histogram will be bimodal,
listogram Analysis (Appendix A.2) indicating two different temperature populations

i? within the window. The bimodality is statistically
Second Step of fine cloud detection

at the WINDOW LEVEL: tested. This is followed by a correlation analysis
Correlation Algorithm (Appendix A.2) to check whether either of the populations could be

+? classified as cloudy. If not, then a cohesion test
Edge Detection

at the WINDOW LEVEL: ensures that the bimodality is actually due to a front
Histogram Analysis (II.A.1) and not due to a freak temperature distribution. An

+ indicator function then assigns values of 0 and 1
Edge verification 1

at the WINDOW LEVEL: according to which population the pixel belongs. The
Cohesion Algorithm (iI.A.2) boundary of Os and ls then defines the edge pixels.

Edge detection and verification LoCal Level: At this level, the Contour-Following

Contour Following (11.0) Algorithm is employed to collect different edge pixels
+ into coherent contours that would represent various

I (Optionally) fronts and eddies in the mesoscale picture. Analysis
Extraction of the b

Guif Stream northern edge (Iil.A) beyond this step requires human intervention, as
these contours have not been assigned any labels.

S. OTHER OFN EFFORTS

Figure 6. Flowchart of Cayula-Cornillon edge detection
algorithm for SST images. (Adapted from Cayula and There have been efforts in the atmospherc sci-
Cornilion (1992)) ences to objectively analyze satellite data for cloud

coverage and radar data to determine gust fronts.
is to isolate and remove the obvious cloudy region. For cloud coverage resolution we refer to the re-

The algorithm exploits the physical characteristics cent work of Woodberry, Tanaka, Hendon and Salby
to remove the clouds in four steps: (i) Clouds are (1991). Their work was also motivated from the
colder than underlying sea surface, so a rough enormity of the satellite data. Synoptic images of the

thresholding is used to separate into non-cloudy global cloud cover pattern, composited from six con-
and possibly cloudy regions; (ii) Cloudy regions are temporaneous satellites, provide an unprecedented
characterized by high gradient magnitudes that are view of the global cloud field. Having horizontal res-
non-coherent. Thus, if the ratio of the magnitude of olution of about 0.5 deg and temporal resolution of 3
the gradient sum to sum of the gradient magnitudes hours, the global cloud imagery (GCI) resolves most
is small/large, classify the region cloudy/clear; (iii) of the variability of organized convection, including
For the regions with an in-between ratio, use the fact several harmonics of the diurnal cycle. Although
that clouds are bulky regions; (iv) finally, use a 3 x 3 the GCI has attractive features, the dense three-
median filter and remove the cloudy regions dimensional nature of the data make it a formidable
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volume of information to treat in a practical and effi- to multiplicatively combine the influence of predic-
cient manner. They developed an interactive image tors. Here we focus on two methods that have been
analysis system to investigate the space-time vari- recently implemented in CAST for oceanographic vi-
ability of the global cloud cover behavior. Their sys- sualization. One uses a 3-D edge operator algorithm
tern integrates data, hardware and software into a for feature extraction, while the other uses physical
single system to provide a variety of space-time co- features to track eddies as they move across the re-
variance analyses in a menu-driven format. gion of interest.

Analysts of radar data have been interested in 9.1 Feature Identification With 3- Edge
extracting all possible information from radar scans
that, like satellites, also provide large amounts of Operator
data. Interactive graphical displays of these data A 3-D edge operator was first used by Zucker and
have formed the basis for gleaning new knowledge Hummel (1981) for feature detection of CT images
from the radar systems. However, for more practi- defined on unit-spaced pixels. Moorhead and Zhu
cal applications to aircraft safety, there have been (1993) extended this operator to work on 3-D data
efforts to devise an automatic, objective identifica-
tion of gust fronts using real time radar data. Uyeda volumes in on Cartiandgridsiad irreoular
and Zrnic (1986) Automatic Detection of Gust Fronts grid intervals in one direction and applied it to the
is one such study. They used a pattern recognition numerical output of a Gulf of Mexico model (Dietrich

algorithm based on radial convergence of winds to et al., 1993).

determine radial bands of gust-front activity and pa-
rameterize them in range and azimuth by fitting the Let f(t, z, y, z) be a four-dimensional scalar field
azimuth as a quadratic function of the range. defined at time t on the grid point (z, y, z). The

Similarly, Goodrich et al. (1991) have developed algorithm starts by retaining all points (z, y, z) such

a thin-line detection algorithm to detect associated that
convergence lines in the radar reflectivity data. For u2(f(t, z, y, z))
objective feature.identification, they also construct a
local least squares quadratic model of the reflectivity where Lt is a temporal threshold. This step elim-
in terms of range and azimuth. inates time-invariant edges such as the coastlines

and noisy data and reduces computational require-
9. FRONT LOCATION FROM MODEL ments.

OUTPUT
For the remaining points, the 3-D edge oper-

Oceanic features like ocean eddies and fronts ator algorithm computes the three Cartesian gra-
are three-dimensional features. Unfortunately, ob- dients and then takes the amplitude of their vec-
servational data in three dimensions are not rou- tor sum. The grid points with the maximum com-
tinely available in real time to even contemplate posite gradient amplitude defines a neighborhood
their extraction. However, model output is available with the greatest dynamic changes to be tested for
over time in three dimensions, and it is of consider- oceanic front/eddy detection. This edge computation
able importance to extract objectively 3-D features produces a companion edge volume to the original
or track their movement over space and time. data volume containing clusters of connected edges.

There have been efforts to derive features from These edge clusters approximate the boundaries of
the model output. One recent study by Fine and possible features. True features are identified based
Fraser (1990) developed a statistical pattern recog- on the edges. Obviously, it is much more complex
nition technique called IREW based on Baye's rule to comprehend 3D objects than 2D ones. However,
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Figure 7. Positional notation for 3 x 3 block.(Adapted from Moorhead and Zhu (1993))

in analyzing oceanographic data sets, strong spa- S(i, j, k) = V(i, j, k) - V(1, 1, 1) be the vector differ-
tial correlations are found between horizontal data ence, D(i, j, k) = IS(i, j, k)l the distance between the
slices within a data volume. Therefore, recognition two grid points, and
and reconstruction of 3D features was simplified and
speeded up by spatially correlating those features Vf(i,j,k) = (f(i,j, k)- f(1, 1, 1))/D(i,j, k).
extracted from 2D data slices. Specifically for a fea-
ture like eddy, these correlations included functional Then the three gradients are defined as:

values, edge values and shapes. = EVf(iik)[S(ij,k)xlx,

The 3-D edge operator acts on a 3 x 3 x 3
data block around the point under examination. g, = E Vf(i,j, k)[S(i,j, k). yy, (30)
Using the notation of Moorhead and Zhu (1993), ijk

at any time t the data in a three-dimensional co- g, = E Vf(i, j, k)[S(i, j, k) z]z,
ordinate system is represented by f(z, y, z); the i,j,k

model output on the gridpoint, (:,j, k) is repre- where x, y, z are unit vectors along the respective
ented as f(:,, Y,, Zk) - A~i, j, k). With this nota- axes. The amplitude square of the overall gradient

tion, a grid point, say (1, 1, 1), is tested for a point is defined as (1g& 2 + Igv 2 + Ig,12).
on the frontal edge as follows. First, define the
3 x 3 x 3 data block for gradient computation (Fig. For application to ocean model output, Moor-
7). For i,j,k E {0, 1,2), let V(i,j,k) represent head and Zhu assumed constant grid intervals, a
the vec' :r from the origin to the gridpoint (i, j, k), and b, along the X and Y directions, and allowed
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for a variable interval along the Z direction as z. We contribute - 0. Thus, the above formulation is
note that most of the computational resource in edge quite appropriate to make the edge (or boundary
detection using the above gradient algorithm is used points) stand out from the rest.
in computing dot products, which requires evalua-
tion of the three direction cosines, a(e2 +z2 )- 1/ 2, b(C2 + (iv) It may be possible to come up with a statistical

z2 Y1"iý and X(C
2 + Z2 )-1/ 2 , where c2 = a2 + b2 is a test to the null hypothesis of a grid point, along

constant. To minimize this requirement, they (1) with its neighboring points in the 3 x 3 x 3

used the approximation, (c2 + z2 )1/ 2 - c + z2/2c, ob- cube, completely lying within a linearly-varying

tained from the second-order Taylor series expan- volume. Under this null hypothesis, we can

sion, and (2) performed these computations in hori- form thirteen double sums of Vf(i,j,k) eg.,

zontal slices where the Z interval is held constant, (Vf(2, 2,2) + Vf(0, 0, 0)), each having zero mean

so that these square roots are computed once for all. and the same variance. The number thirteen

These two steps make the algorithm extremely fast. results from the twenty-six Vf(i, j, k), nine each
from k = 0, 2 and eight from k = 1 (See Fig.
7). Denoting these double sums by s, their

At this time, we note the following points: mean by !, and assuming them to be statistically

(i) Vf(i, j, k) represents the gradient along the vec- independent (which they are not, since each sum

tor S(i,j, k); the effect of multiplying it with the contains 2f(1, 1, 1) as common), the statistic

dot product term in the summations, results in
(f(i,j, k) - f(1, 1, 1))cos0, where 0, is the angle t = i (31)
that the vector S(i, j, k) makes with the s-axis, Z =

s E [X, Y, Z1. Thus, the terms in summation are is distributed approximately as Student's t with 13

the total change being resolved along the differ- degrees of freedom.
ent axes. Even without this test of hypothesis, the al-

(ii) If a point were to lie in a volume of f values gorithm is quite efficient in extracting ocean ed-
that are at most varying linearly in z, y and z, dies from model outputs. The algorithm developed
then g, g. and g, will be almost negligible. This is general and may be applied to various ocean
is easy to see since the point (1, 1, 1) lies in the features by specifying different identification crite-
symmetric center of the 3 x 3 x 3 cube, and for ria. The performance of this algorithm was demon-
each Vf(i, j, k) there is a symmetric difference of strated on the DieCAST model output for the Gulf
equal magnitude but opposite sign. If the point of Mexico region. An example of the sharpness of
being tested were to lie inside the eddy, then the eddy features extracted using the algorithm is
for small grid lengths we could assume a linear shown in Fig. 8.
variation. On the other hand if the point were

outside the eddy, it would be in volume of almost 9.2 Objective Tracking of an Eddy

constant f' values. In order to analyze the thermodynamic struc-
(iii) For a point on the boundary of an eddy, it ture of the ocean circulation simulated by a numer-

is in the middle of two neighborhoods, one of ical ocean model, it is necessary to sequentially ob-
eddy characteristics and the other with non- serve, in time and space, mesoscale features mani-
eddy characteristics. The functional difference fested by the model output. Because of grid dimen-
from the eddy side will contribute something sions, as well as the frequency of sampling, such ex-
that is stronger than a linear variation (perhaps aminations are ponderous at best. The algorithm
involving a jump), while the non-eddy side will developed here objectively tracks an eddy over time
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Figure 8. An example of extracted eddies that are animated temporally to show their characteristics
variations. The sequence progresses from left to right and top to bottom (lexographical order).
(Adapted from Zhu et. al. (1993))

and space. To initiate the tracking process, model
output is displayed on the screen so that the region of
activity, the to-be-tracked eddy, is identified. From Objective Tracking Criterion: The derivation of thisthis point on, the algorithm homes in on the eddy as algorithm depends on the monotonic behavior of
it evolves over time and space. the various parameters employed in the tracking.

For instance, if the eddy is a cyclonic eddy and
The eddy can be tracked with respect to any SST is used to track its motion, then the eddy is

of the thermodynamic parameters, e.g., SSH, SST, a warm core eddy, characterized by monotonically-
speed of eddy circulation, etc. For further sophisti- decreasing temperatures as we move away from the
cation, one may utilize the subsurface values. How- eddy center. If the temperature of the eddy surface
ever, the purpose of this algorithm is to follow the is viewed in three dimensions, it will look like an
general movement of the eddy; that includes a gen- inverted paraboloid (See Fig. 9a). Similarly, if
eral neighborhood of the eddy activity without spec- SSH is used for tracking, the sea surface elevation
ifying an exact eddy center. will be maximum at the eddy center, and it will
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Figure 9. A three dimensional presentation of a warm-core eddy in terms of its (a) sea-surface
temperature, (b) sea-surface height and (c) surface current speed. Note that the minimum current
speed occurs at the center of the eddy.
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Figure 10. Six images of an animated sequence of two synchronized windows for eddy tracking.
Window 1 (upper) is the horizontal cross-section of the temperature field with the cross-hair at the
eddy center and window 2 (lower) is the vertical (XZ) cross-section at the latitude of the eddy center
represented by the cross-hair. (Adapted from Lakhamaraju (1993))
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circulation in terms of SSH. However, if current In fitting the quadratic least squares surface eq.

speed is the criterion, then the speed at the eddy (32), it will be necessary to rearrange the indices so

center is the minimum, and it increases as we that one can cast eq. (32) in a standard format:

move away from the center. In fact, it has been
observed in the Gulf of Mexico that eddies rotate Y = X'

as a solid body. A three-dimensional graph of where Y is the vector obtained from rearranging

speed of eddy currents will appear like a parabola, (ij in a single vector; P = (81,...,66Y, with 31 =
with its vertex at the minimum (Fig. 9c). Thus a, in a single=vc, 4 6s (/ekand #6 w f;i =a, /32 =b, /. = e, /34 =d, /3s •eand /3 = f; X ff
for a selected parameter, the algorithm invokes its (Xki) is n x 6 matrix with the index k corresponding

monotonic behavior, fits the parameter to a local, to the observation index of Yk and j corresponding
two-dimensional smooth surface as a function of X- to the parameter index of A. Suppose the index

longitude and Y-latitude, and finds a local extreme k corresponds to the grid point (ij), then Xii =

point. Because of the monotonic behavior of the eddy 2~p Xk2 = zjYij, Xk3 = Yj, Xk4 = Tij, X-5 = yij

circulation parameters, this extreme point will be and = 1.

a maximum for SST and SSH and a minimum for

the current speed. In any case, this extreme point The following simple steps are involved. Start
will determine the eddy center. Fig. 10 displays six with initial position pl = (zj, yj) and assume the

images of on animated sequence of two synchronized initial eddy center velocity V, = (V,, V1,) is zero. Say

windows for eddy tracking. we have determined eddy centers Pj = (Cj, yj) at

Least Squares Formulation: Let (r, y) be the location times tj, j = 1, ... , n. The initial position for the
next step is defined by P1p,, P + V•(t,+ 1 - t•) at

in terms of (longitude, latitude). Then, given an
time t,, where Vn= -•- Et! t-f 7_ with V, = 0 All grid

approximate starting position of the eddy center, th
(z0, yo), select all grid points within a radius R. Let points within the specified radius R of (xI, yl) are

us fit then determined and the two-dimensional array ar

C= az 2 +bz7+cy2 +dz+ey+f (32) and (zij, yij) are loaded into Yk and Xki. A least
squares algorithm is used to determine coefficientswhere ( is the value of parameter used to character- P that are interpreted in terms of eq. (32). Solve eq.

ize the eddy (SSH, SST, or current speed) at locations (33) to find p,+et= (Zitmo, (2So)

(z, y). Once the quadratic surface in eq. (32) is spec-

ified, we can find its extreme point by equating to
zero the first derivatives with respect to x and y, i.e., 10. CONCLUDING REMARKS

2az + by + d = 0 (33) We have provided a brief review of objective
bx + 2cy + e = 0 methods that have been used for identification and

Solving eq. (33). we estimate the eddy center by tracking of mesoscale ocean features like eddies and

be - 2cd fronts. The North Atlantic, Gulf Stream region has
z1 = 4ac - b2' (34) been the main area of feature identification, primar-

bd - 2ae ily because of the well-defined, sharp features of the
= 4ac - b2  Gulf Stream, the large amounts of data available

Assuming that the time interval between eddy from a large number of experiments conducted, and

tracking is moderate, one can derive the next guess because of Navy interest in the region. Also, the re-

using the newly-estimated eddy center position gion enjoys availability of large amounts of remotely

(zI, yi) and modifying by incorporating the past in- sensed, satellite data providing information on SST

formation on the eddy center velocity and then re- and SSH. Thus, most of the methodologies developed
peating the steps described above, and reviewed pertain to the GS region.
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used by the oceanography community in its analyses ment of an automatic feature identification system.
of the various kinds of data. In our view, the best This algorithm is based on the Bayes probability,
objective method would be to dynamically interpo- and it iteratively updates the probability of assign-
late the available information by appropriate data ing a pixel its feature label.
assimilation methods and extract the features of in-
terest. This approach will take advantage of all pos- For spatial interpolation, and for temporal in-

sible data, surface or sub-surface, and will dynami- terpolation to some extent, the best approach would

cally interpolate the features in the missing part of be to use a Kalman-type model. This approach can

the satellite image. The features can be extracted by easily incorporate two-dimensional phase speeds of

interpolating for the specific feature characteristics, complex meanders and take advantage of estima-

e.g., the T15, the 15 deg isotherm at 200 m depth to tions in the past to arrive at an optimal estimation at

determine the GSNW or use the general edge detec- the current epoch. This approach has the additional

tion procedures of Section 5. This takes both data advantage of providing estimation error in terms of

and dynamics into coisideration. This capability is the estimated covariance parameters. But even for

still somewhere in the future, since the ocean models this best approach, Chin and Mariano (1993) indi-

have not attained the necessary maturity. cate that it cannot yet realize the sensitivity of the
trained personnel. Perhaps, the only advantages

As an alternative, the four-tiered algorithmic over the manual approach are the objectivity, con-
approach fostered by Lybanon and Holyer (1991) sistency and savings in time.
comprising edge detection, edge labeling, feature
construction and the expert system is quite appro- The methods based on the data and statistical

priate. The modular approach adopted in the Navy's correlations would be next in order. The Pathfinder

SAMAS promises to be an excellent system. Im- model, to determine the mean GS axis using an ob-

provements and modifications to individual modules jective interpolation approach, correlates the across-

can be affected independently. stream anomalies using a parametric covariance
structure that is a function of the along-stream dis-

The edge detection system based on the Clus- tance. We were surprised that this method did not
ter Shade Edge Operator functions well and seems work as well as one might expect. But as Horton
to avoid the noisiness of the gradient-type edge op- (1982) conjectures, the problem may be confounded
erators. It is based on the (fun-normalized) skew- by mis-specification of the mean GS axis and of the
ness measure of the gray-level co-occurrence matrix. covariance structure, and also the large variance
In evaluation of five different edge detection algo- around the axis. For an evaluation of the Pathfinder
rithms, Cornillon and Watts (1987) also found the and some other algorithms, see Szczechowski (1992).
'skew' algorithm to be the best. Most analyses per-
formed on the GS front detection are based on the The method based on complex empirical orthog-

initial analyses of the satellite images performed by onal function is also based on the correlations of

the URI group. The edge detection and contour fol- the GS positions along the axis, but it avoids pa-
lowing algorithm of Cayula and Cornillon (1992) is rameterization of the covariance function. However,
quite sophisticated and is based on objective, sta- the method requires updating of the complex ampli-
tistical methodology that effectively and systemati- tudes based on few, new positional fixes. This was
cally eliminates the effect of clouds in satellite im- done using nonlinear least squares optimization.
ages. However, the URI system still needs to de- In a different analysis based on inverted echo
velop the subsequent components of the four-tiered sounders and other estimation procedures, Cornil-
approach mentioned above, Ion and Watts (1987) found that the objective meth-

The feature labeling algorithm ofKrishnakumar ods were, at most, as accurate as the subjective anal-
et al. (1990a) is an imperative step in the develop- ysis of the GSNW as defined by T15 . The rms error
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varied from 15 to 30 kmn. Passi et al. (1991) using is an important step in taking advantage of the ever-
an analysis of tomographic data, which is quite ac- increasing amounts of satellite data. It is antici-
curate, indicated that the limit of prediction of the pated that the system will be constantly upgraded
GSNW was about 7 km. Such estimation accuracy as the new algorithms are developed and tested.
appears to be far in the future. ACKNOWLEDGMENTS
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